#### Рецензия

на электронную лекцию «Компьютерное конструирование и анализ распределения давления на поверхность лопасти рабочего колеса радиальной турбины» для дополнительного изучения отдельных тем учебной дисциплины «Гидравлические и пневматические системы» преподавателя специальных дисциплин Чемезова Д.А.

Электронная лекция «Компьютерное конструирование и анализ распределения давления на поверхность лопасти рабочего колеса радиальной турбины» для дополнительного изучения отдельных тем учебной дисциплины «Гидравлические и пневматические системы» предназначена для использования в среднем профессиональном образовании по специальности 151901 «Технология машиностроения». Лекция представляет собой материалы научно-исследовательского характера полностью соответствующие ФГОС по специальности.

Лекция содержит следующие разделы: введение. материалы и методы исследования, результаты и их обсуждение, заключение, библиографический список и вопросы для самостоятельного контроля изученного материала.

Каждая раздел лекции сопровождается понятной для студентов информацией, в которой описывается актуальность проводимого исследования, последовательность выполнения экспериментов, даются рекомендации по возможному использованию полученных результатов на практике.

Представленные лекции позволяют организовать индивидуальную и групповую научно-исследовательскую работу в различных условиях обучения: дифференцированного, интегрированного, самостоятельного и могут использоваться для подведения промежуточных тематических итогов.

Электронная лекция полностью адаптирована к производственному процессу.

Приведенные в лекции задачи могут быть практически выполнены с помощью компьютерных программ трехмерного моделирования и инженерного анализа KOMPAS 3D, SolidWorks, Ansys Workbench.

Электронные лекции рекомендованы для распространения и внедрения передового опыта на территории РФ по специальности 151901 «Технология машиностроения».

Реценз увашов ( Глектическией директ - начальник управлен ОДО "Закор., Автоприбор АНЦЕЛЯРИЯ

Согласовано rybaurob инпелими



# Электронные лекции для дополнительного изучения отдельных тем по учебной дисциплине «Гидравлические и пневматические системы»

Тема: «Компьютерное конструирование и анализ распределения давления на поверхность лопасти рабочего колеса радиальной турбины»

Для обучающихся специальности 151901 (Технология машиностроения)

Разработчик: Чемезов Д.А., преподаватель спец. дисциплин ГБПОУ ВО «Владимирский индустриальный колледж»

2016

Электронные лекции для дополнительного изучения дисциплины «Гидравлические и пневматические системы» представляют собой материалы научно-исследовательского характера отдельных тем курса. Материалы предназначены для самостоятельного изучения студентами.

2

# Лекция 1 (2 ч)

# Компьютерное конструирование и анализ распределения давления на поверхность лопасти рабочего колеса радиальной турбины

# План

# 1. Введение

- 2. Материалы и методы исследования
- 3. Результаты и их обсуждение
- 4. Заключение

# Библиографический список

1. Турбина [Электронный ресурс]

https://ru.wikipedia.org/wiki/%D2%F3%F0%E1%E8%ED%E0

2. ANSYS BladeModeler [Электронный ресурс] <u>http://www.cae-expert.ru/product/ansys-blademodeler</u>

3. Углы установки лопасти [Электронный ресурс] <u>http://www.aviationsweb.ru/page-448.html</u>

# 1. Введение

Гидравлическая турбина – лопаточная машина, приводится во вращение потоком жидкости для преобразования механической энергии потока жидкости в механическую энергию на валу. В зависимости от напора и мощности гидравлической установки, выбирают тип гидравлической турбины.

Радиально-осевые турбины считаются быстроходными. В этих турбинах, поток жидкости движется в двух направлениях:

а) радиальном – от периферии к центру вращающегося рабочего колеса турбины;

б) осевом – течение жидкости к выходу.

Радиальная турбина состоит из ротора и статора. Ротор – рабочее колесо, состоящее из ступицы, соединенной с валом турбины, комплекта лопастей (детали, имеющие сложные криволинейные поверхности по всей длине) и обода.

Конструирование гидравлической турбины методом объемного твердотельного моделирования, позволяет получить точную геометрию машины и в дальнейшем выполнять инженерные расчеты отдельных деталей или сборочного узла в САЕ-системах.

# 2. Материалы и методы исследования

Модель рабочего колеса радиальной турбины строилась в интегрированной среде Ansys Workbench. Генерация геометрии рабочего колеса турбины со всеми элементами, на первом этапе моделирования выполнялась в модуле BladeGen. Были заданы следующие значения параметров: координаты (х и z), по которым производится расчет размеров и конфигурации лопастей и

обода рабочего колеса турбины; размеры входной и выходной кромок лопасти; толщина лопасти; количество лопастей. В меридианном сечении (рис. 1) указаны элементы рабочего колеса радиальной турбины: а – входная зона; b – внешний обвод (ведомый); c – втулочная поверхность (ведущий обвод); d – выходная зона; e, f – линии тока. В диалоговом окне программы будут представлены следующие характеристики моделируемого рабочего колеса: шаг (в градусах) входной и выходной кромки лопасти; центр инерции Z, R, T, Mp, M; аэродинамическая поверхность (область) лопасти; длина биссектрисы угла, образованного сторонами лопасти в поперечном сечении; длина выпуклости лопасти; меридианная длина лопасти; угол установки лопасти; отношение длины хорды лопасти к шагу.



Рисунок 1 – Меридианное сечение рабочего колеса радиальной турбины



Рисунок 2 – Трехмерная модель лопасти рабочего колеса радиальной турбины



Рисунок 3 – Трехмерная модель рабочего колеса радиальной турбины

Все данные импортировались в модуль Transient Structural – DesignModeler, где были получены трехмерные модели лопасти (рис. 2) и рабочего колеса турбины (рис. 3) массой 8,217 кг, наружным диаметром 200 мм и шириной 95 мм.

Широкие функциональные возможности программы BladeGen позволяют анализировать геометрические характеристики рабочего колеса турбины. Меридианный контур может быть представлен в виде цветной гаммы, нанесенной на эскиз сечения смоделированного рабочего колеса радиальной турбины. Цвета дают качественную оценку величин параметров: Тета (Theta) – угол охвата лопасти в плане (рис. 4, а); Бета (Beta) – угол между хордой и плоскостью вращения лопасти (рис. 4, б); угол наклона лопасти (рис. 4, в); нормальная толщина лопасти (рис. 4, г).



Рисунок 4 – Эпюры меридианных контуров

Кривизна втулочной поверхности и внешнего обвода рабочего колеса (меридиан) радиальной турбины и кривизна лопасти рассчитывалась при обратном радиусе кривизны 0...0,1, входной кромке лопасти равной 0 и выходной кромке лопасти равной 1. Зависимости представлены в табл. 1 – 2.

Значения углов Тета и Бета входной и выходной кромок лопасти получены на промежутке от 0 до 1. Зависимости углов кромок лопасти рабочего колеса радиальной турбины представлены в табл. 3 – 4.

Отношение входной кромки к выходной кромке лопасти рассчитано при втулочной поверхности рабочего колеса равной 0 и внешнем обводе равном 1. Зависимости отношений представлены в табл. 5.

Величины угла наклона (меридиан 0 – 1) получены при постоянной и переменной длинах лопасти. Зависимости угла представлены в табл. 6.

В табл. 7. представлены значения площади (квазиортогональный параметр) рабочего колеса турбины, при входной кромке лопасти равной 0 и выходной кромке лопасти равной 1.

Характеристика аэродинамической поверхности лопасти рабочего колеса турбины на всей длине отображена в табл. 8.

Результаты расчета максимального сферического диаметра между двумя соседними лопастями, при входной кромке лопасти равной 0 и выходной кромке лопасти равной 1, представлены в табл. 9.

5

### Таблица 1

Значения кривизны втулочной поверхности и внешнего обвода рабочего колеса (меридиан) радиальной турбины

| Втулочная поверхность рабочего колеса   |          |          |       |       |                        |        |  |  |
|-----------------------------------------|----------|----------|-------|-------|------------------------|--------|--|--|
| Входная – выходная кромки               | -0,2     | 0,22     | 0,5   | 0,78  | 0,92                   | 1,2    |  |  |
| Обратный радиус кривизны                | 0        | 0,005    | 0,027 | 0,023 | 0,003                  | 0      |  |  |
| Радиус, мм                              | 103,2    | 62,87    | 36,5  | 20,8  | 20,0                   | 20,0   |  |  |
| Расстояние вдоль меридианной кривой, мм | -19,2    | 21,12    | 48,01 | 74,9  | 88,34                  | 115,23 |  |  |
| Внешний обве                            | од рабоч | чего кој | теса  |       |                        |        |  |  |
| Входная – выходная кромки               | -0,2     | 0,22     | 0,5   | 0,78  | 0,92                   | 1,2    |  |  |
| Обратный радиус кривизны                | 0        | 0,008    | 0,058 | 0,032 | $1,57 \times 10^{-15}$ | 0      |  |  |
| Радиус, мм                              | 94,6     | 72,33    | 57,79 | 50,16 | 50,0                   | 50,0   |  |  |
| Расстояние вдоль меридианной кривой, мм | -10,6    | 11,66    | 26,5  | 41,35 | 48,77                  | 63,61  |  |  |

#### Таблица 2

Значения кривизны лопасти рабочего колеса радиальной турбины (средняя линия)

| Входная – выходная кромки               | 0                       | 0,3                  | 0,6                   | 1,0                    |
|-----------------------------------------|-------------------------|----------------------|-----------------------|------------------------|
| Обратный радиус кривизны                | 5,84 × 10 <sup>-5</sup> | $2,8 \times 10^{-5}$ | $2,81 \times 10^{-6}$ | $-5,42 \times 10^{-6}$ |
| Радиус, мм                              | 80                      | 54,21                | 29,9                  | 20,0                   |
| Расстояние вдоль меридианной кривой, мм | 0                       | 25,8                 | 51,61                 | 86,02                  |
| Расстояние вдоль биссектрисы, мм        | 0                       | 29,34                | 58,69                 | 97,81                  |

#### Таблица 3

Значения угла *Тета* входной и выходной кромок лопасти рабочего колеса радиальной турбины

| Угол <i>Тета</i> входной кромки лопасти       |        |        |       |       |       |  |  |  |
|-----------------------------------------------|--------|--------|-------|-------|-------|--|--|--|
| Входная – выходная кромки 0 0,25 0,5 0,75 1,0 |        |        |       |       |       |  |  |  |
| Угол <i>Тета</i> , град.                      |        | 0      | 0     | 0     | 0     |  |  |  |
| Радиус, мм                                    | 80,0   | 80,0   | 80,0  | 80,0  | 80,0  |  |  |  |
| Расстояние вдоль меридианной кривой, мм       |        | 0      | 0     | 0     | 0     |  |  |  |
| Угол <i>Тета</i> выходной к                   | омки л | опасти |       |       |       |  |  |  |
| Входная – выходная кромки                     | 0      | 0,25   | 0,5   | 0,75  | 1,0   |  |  |  |
| Угол <i>Тета</i> , град.                      | 79,99  | 79,99  | 79,99 | 79,99 | 79,99 |  |  |  |
| Радиус, мм                                    | 20,0   | 27,5   | 35,0  | 42,5  | 50,0  |  |  |  |
| Расстояние вдоль меридианной кривой, мм       | 86,02  | 75,27  | 64,52 | 53,76 | 43,01 |  |  |  |

#### Таблица 4

Значения угла *Бета* входной и выходной кромок лопасти рабочего колеса радиальной турбины

| Угол <i>Бета</i> входной кромки лопасти |          |         |        |        |        |  |  |  |  |
|-----------------------------------------|----------|---------|--------|--------|--------|--|--|--|--|
| Входная – выходная кромки               | 0        | 0,25    | 0,5    | 0,75   | 1,0    |  |  |  |  |
| Угол <i>Бета</i> , град.                | 28,424   | 36,529  | 45,129 | 53,942 | 62,57  |  |  |  |  |
| Радиус, мм                              | 80,0     | 80,0    | 80,0   | 80,0   | 80,0   |  |  |  |  |
| Расстояние вдоль меридианной кривой, мм | 0        | 0       | 0      | 0      | 0      |  |  |  |  |
| Угол <i>Бета</i> выходной               | і кромки | лопасти | ĺ      |        |        |  |  |  |  |
| Входная – выходная кромки               | 0        | 0,25    | 0,5    | 0,75   | 1,0    |  |  |  |  |
| Угол <i>Бета</i> , град.                | 28,427   | 36,471  | 45,087 | 53,923 | 62,571 |  |  |  |  |
| Радиус, мм                              | 20,0     | 27,5    | 35,0   | 42,5   | 50,0   |  |  |  |  |
| Расстояние вдоль меридианной кривой, мм | 86,02    | 75,27   | 64,52  | 53,76  | 43,01  |  |  |  |  |

#### Таблица 5

Отношение входной кромки к выходной кромке лопасти рабочего колеса радиальной турбины

| Входная кромка лопасти – эллипс с малым радиусом   |     |      |     |      |     |  |  |
|----------------------------------------------------|-----|------|-----|------|-----|--|--|
| Втулочная поверхность – внешний обвод              | 0   | 0,25 | 0,5 | 0,75 | 1,0 |  |  |
| Значение параметров                                | 2,5 | 2,5  | 2,5 | 2,5  | 2,5 |  |  |
| Входная кромка лопасти – эллипс с большим радиусом |     |      |     |      |     |  |  |
| Втулочная поверхность – внешний обвод              | 0   | 0,25 | 0,5 | 0,75 | 1,0 |  |  |
| Значение параметров                                | 5,0 | 5,0  | 5,0 | 5,0  | 5,0 |  |  |

# Таблица 6

Значения угла наклона лопасти рабочего колеса радиальной турбины

| Постоянная длина лопасти                |                        |         |       |       |       |                       |  |  |  |
|-----------------------------------------|------------------------|---------|-------|-------|-------|-----------------------|--|--|--|
| Втулочная поверхность – внешний обвод   | 0                      | 0,2     | 0,4   | 0,6   | 0,8   | 1,0                   |  |  |  |
| Угол наклона, град.                     |                        | 15,26   | 19,02 | 15,45 | 8,56  | $6,52 \times 10^{-7}$ |  |  |  |
| Радиус, мм                              |                        | 67,09   | 54,27 | 42,42 | 35,89 | 35,0                  |  |  |  |
| Расстояние вдоль меридианной кривой, мм |                        | 12,9    | 25,8  | 38,71 | 51,61 | 64,51                 |  |  |  |
| Переменная                              | <mark>і длина</mark> ј | топасти | [     |       |       |                       |  |  |  |
| Втулочная поверхность – внешний обвод   | 0                      | 0,2     | 0,4   | 0,6   | 0,8   | 1,0                   |  |  |  |
| Угол наклона, град.                     | 0,31                   | 36,21   | 44,91 | 34,7  | 4,53  | -0,45                 |  |  |  |
| Радиус, мм                              | 80,0                   | 67,33   | 55,51 | 44,96 | 35,82 | 35,0                  |  |  |  |
| Расстояние вдоль меридианной кривой, мм | -0,002                 | 12,67   | 24,62 | 36,01 | 52,06 | 64,55                 |  |  |  |

#### Таблица 7

Значения площади (квазиортогональный параметр) рабочего колеса радиальной турбины

| Без учета лопастей                                     |            |           |          |           |         |         |  |
|--------------------------------------------------------|------------|-----------|----------|-----------|---------|---------|--|
| Входная – выходная кромки                              | 0          | 0,2       | 0,4      | 0,6       | 0,8     | 1,0     |  |
| Площадь, мм <sup>2</sup>                               | 10053,1    | 9133,65   | 8723,99  | 7890,46   | 6907,28 | 6597,34 |  |
| С учетом лопастей                                      |            |           |          |           |         |         |  |
| Входная – выходная кромки                              | 0          | 0,2       | 0,4      | 0,6       | 0,8     | 1,0     |  |
| Площадь, мм <sup>2</sup>                               | 8282,32    | 7235,84   | 6470,85  | 5278,51   | 4234,23 | 3924,89 |  |
| Без учета лопас                                        | тей, с угл | ом потока | жидкости | и (коррек | ция)    |         |  |
| Входная – выходная кромки                              | 0          | 0,2       | 0,4      | 0,6       | 0,8     | 1,0     |  |
| Площадь, мм <sup>2</sup>                               | 6848,33    | 6249,35   | 5875,5   | 5229,69   | 4579,44 | 4270,2  |  |
| С учетом лопастей, с углом потока жидкости (коррекция) |            |           |          |           |         |         |  |
| Входная – выходная кромки                              | 0          | 0,2       | 0,4      | 0,6       | 0,8     | 1,0     |  |
| Площадь, мм <sup>2</sup>                               | 5685,52    | 4989,55   | 4388,26  | 3508,71   | 2798,71 | 2526,02 |  |

#### Таблица 8

Значения площади аэродинамической поверхности лопасти рабочего колеса радиальной турбины

| Входная – выходная кромки | 0      | 0,2    | 0,4    | 0,6    | 0,8    | 1,0    |
|---------------------------|--------|--------|--------|--------|--------|--------|
| Площадь, мм <sup>2</sup>  | 483,52 | 469,21 | 459,73 | 455,26 | 455,86 | 461,47 |

#### Таблица 9

Значение максимального сферического диаметра между двумя соседними лопастями рабочего колеса радиальной турбины

|                                      |      |       | ,     | •     |       |      |
|--------------------------------------|------|-------|-------|-------|-------|------|
| Входная – выходная кромки            | 0    | 0,201 | 0,398 | 0,594 | 0,798 | 1,0  |
| Максимальный сферический диаметр, мм | 20,0 | 20,25 | 22,13 | 27,21 | 30,54 | 30,0 |
|                                      |      |       |       |       |       |      |

На всей длине лопасти рабочего колеса будет действовать переменное давление, создаваемое движущейся в радиальном направлении жидкостью (для расчета принята вода). Для расчета величин давления приняты: плотность воды (1000 кг/м<sup>3</sup>), температура воды (22°С) и векторная величина – гидростатическое ускорение (3,5 м/с<sup>2</sup>). Численные значения результатов моделирования представлены цветовой гаммой на поверхности трехмерной модели лопасти (рис. 5).



Рисунок 5 – Распределение давления (Па) на поверхности лопасти рабочего колеса радиальной турбины

Отмечено, что наибольшее давление возникает на входной кромке лопасти рабочего колеса, а наименьшее – на выходной. При этом величина давления изменяется более чем в десять раз.

## 4. Заключение

Интегрированный модуль BladeGen в среде Ansys – это построение объемных твердотельных моделей и детальный анализ геометрии элементов турбин различных конфигураций на этапе проектирования реальной лопастной машины. Комплексные инженерные расчеты и анализ результатов выполняются путем разбиения объемной модели рабочего колеса на заданное количество узлов/элементов (Mesh) с последующей передачей данных в модули Autodyn, CFX, Finite Element Modeler, Fluent, ICEM CFD, Mechanical APDL и Polyflow.

#### Вопросы для самоконтроля

1. Устройство радиальной турбины?

2. На модели лопасти турбины укажите углы тета и бета?

3. Как влияет угол наклона лопасти на производительность турбины?

4. Как распределяется давление на рабочей поверхности лопасти колеса турбины?

5. Что такое гидростатическое давление?